skip to main content


Search for: All records

Creators/Authors contains: "Statscewich, Hank"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Food resources in the ocean are often found in low densities, and need to be concentrated for efficient consumption. This is done in part by oceanographic features transporting and locally concentrating plankton, creating a highly patchy resource. Lagrangian approaches applied to ocean dynamics can identify these transport features, linking Lagrangian transport and spatial ecology. However, little is known about how Lagrangian approaches perform in ageostrophic coastal flows. This study evaluates two Lagrangian Coherent Structure metrics against the distribution of phytoplankton; Finite Time Lyapunov Exponents (FTLE) and Relative Particle Density (RPD). FTLE and RPD are applied to High Frequency Radar (HFR) observed surface currents within a biological hotspot, Palmer Deep Canyon Antarctica. FTLE and RPD identify different transport patterns, with RPD mapping single particle trajectories and FTLE tracking relative motion of paired particles. Simultaneous measurements of circulation and phytoplankton were gathered through the integration of vessel and autonomous glider surveys within the HFR footprint. Results show FTLE better defined phytoplankton patches compared to RPD, with the strongest associations occurring in stratified conditions, suggesting that phytoplankton congregate along FTLE ridges in coastal flows. This quantified relationship between circulation and phytoplankton patches emphasizes the role of transport in the maintenance of coastal food webs.

     
    more » « less
  2. Salpa thompsoniis an ephemerally abundant pelagic tunicate in the waters of the Southern Ocean that makes significant contributions to carbon flux and nutrient recycling in the region. WhileS. thompsoni, hereafter referred to as “salps”, was historically described as a polar-temperate species with a latitudinal range of 40 – 60°S, observations of salps in coastal waters of the Western Antarctic Peninsula have become more common in the last 50 years. There is a need to better understand the variability in salp densities and vertical distribution patterns in Antarctic waters to improve predictions of their contribution to the global carbon cycle. We used acoustic data obtained from an echosounder mounted to an autonomous underwater Slocum glider to investigate the anomalously high densities of salps observed in Palmer Deep Canyon, at the Western Antarctic Peninsula, in the austral summer of 2020. Acoustic measurements of salps were made synchronously with temperature and salinity recordings (all made on the glider downcasts), and asynchronously with chlorophyll-ameasurements (made on the glider upcasts and matched to salp measurements by profile) across the depth of the water column near Palmer Deep Canyon for 60 days. Using this approach, we collected high-resolution data on the vertical and temporal distributions of salps, their association with key water masses, their diel vertical migration patterns, and their correlation with chlorophyll-a. While salps were recorded throughout the water column, they were most prevalent in Antarctic Surface Water. A peak in vertical distribution was detected from 0 – 50 m regardless of time of day or point in the summer season. We found salps did not undergo diel vertical migration in the early season, but following the breakdown of the remnant Winter Water layer in late January, marginal diel vertical migration was initiated and sustained through to the end of our study. There was a significant, positive correlation between salp densities and chlorophyll-a. To our knowledge, this is the first high resolution assessment of salp spatial (on the vertical) and temporal distributions in the Southern Ocean as well as the first to use glider-borne acoustics to assess salpsin situ.

     
    more » « less
  3. Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    Discovering the predictors of foraging locations can be challenging, and is often the critical missing piece for interpreting the ecological significance of observed movement patterns of predators. This is especially true in dynamic coastal marine systems, where planktonic food resources are diffuse and must be either physically or biologically concentrated to support upper trophic levels. In the Western Antarctic Peninsula, recent climate change has created new foraging sympatry between Adélie (Pygoscelis adeliae) and gentoo (P. papua) penguins in a known biological hotspot near Palmer Deep canyon. We used this recent sympatry as an opportunity to investigate how dynamic local oceanographic features affect aspects of the foraging ecology of these two species. Simulated particle trajectories from measured surface currents were used to investigate the co-occurrence of convergent ocean features and penguin foraging locations. Adélie penguin diving activity was restricted to the upper mixed layer, while gentoo penguins often foraged much deeper than the mixed layer, suggesting that Adélie penguins may be more responsive to dynamic surface convergent features compared to gentoo penguins. We found that, despite large differences in diving and foraging behavior, both shallow-diving Adélie and deeper-diving gentoo penguins strongly selected for surface convergent features. Furthermore, there was no difference in selectivity for shallow- versus deep-diving gentoo penguins. Our results suggest that these two mesopredators are selecting surface convergent features, however, how these surface signals are related to subsurface prey fields is unknown.

     
    more » « less
  5. Abstract. Although Arctic marine ecosystems are changing rapidly,year-round monitoring is currently very limited and presents multiplechallenges unique to this region. The Chukchi Ecosystem Observatory (CEO)described here uses new sensor technologies to meet needs for continuous,high-resolution, and year-round observations across all levels of theecosystem in the biologically productive and seasonally ice-covered ChukchiSea off the northwest coast of Alaska. This mooring array records a broadsuite of variables that facilitate observations, yielding betterunderstanding of physical, chemical, and biological couplings, phenologies,and the overall state of this Arctic shelf marine ecosystem. While coldtemperatures and 8 months of sea ice cover present challenging conditions forthe operation of the CEO, this extreme environment also serves as a rigoroustest bed for innovative ecosystem monitoring strategies. Here, we presentdata from the 2015–2016 CEO deployments that provide new perspectives on theseasonal evolution of sea ice, water column structure, and physicalproperties, annual cycles in nitrate, dissolved oxygen, phytoplankton blooms,and export, zooplankton abundance and vertical migration, the occurrence ofArctic cod, and vocalizations of marine mammals such as bearded seals. Theseintegrated ecosystem observations are being combined with ship-basedobservations and modeling to produce a time series that documents biologicalcommunity responses to changing seasonal sea ice and water temperatures whileestablishing a scientific basis for ecosystem management.

     
    more » « less